
Visualizing the Usage of Pythonic Idioms Over
Time: A Case Study of the with open Idiom

Tattiya Sakulniwat∗, Raula Gaikovina Kula†, Chaiyong Ragkhitwetsagul∗,
Morakot Choetkiertikul∗, Thanwadee Sunetnanta∗, Dong Wang †, Takashi Ishio† and Kenichi Matsumoto†

∗Faculty of Information and Communication Technology (ICT), Mahidol University
†Nara Institute of Science and Technology (NAIST)

Email: tattiya.sakul@gmail.com, {chaiyong.rag, morakot.cho, thanwadee.sun}@mahidol.ac.th
{raula-k, wang.dong.vt8, ishio, matumoto}@is.naist.jp

Abstract—Veterans within the Python community claim that
the usage of Pythonic idiomatic writing style is usually pre-
ferred. Because of its conciseness and ease of understanding,
the idiomatic code tends to be more efficient and less error-
prone code. With the growth of Python developers outside the
Python community, it is not certain to what extent how Python
idiomatic code is used in real software projects, especially if
there are consequences. In this paper, our aim is to understand
when and how developers start to use idioms in their software
projects. Specifically, we propose a technique to visualize and
understand the usage of the with open Pythonic idiom, one
of the popular idioms. Two visualizations are proposed: (1) a
visualization of evolution of non-idiomatic and idiomatic style
of writing in four Python software projects over time and (2) a
visualization to show the amount of appearing and disappearing
idioms by comparing from the first and the latest version of
the projects. The results show that developers tend to adopt the
idiomatic code over time. We also found that, in three out of the
four projects, the developers fixed their code during the evolution
of the software to improve their Pythonic coding styles.

Index Terms—Python, Pythonic, Conventions, Programming,
Idioms

I. INTRODUCTION

According to the annual GitHub report, the Python pro-
gramming language ranks in the top three most used by
programmers1. It is also known as one of the most used
language due to its ease of use and understandable syntax2.

To take full advantage of Python as designed by the
founders, the Zen of Python3 was created with a collection
of 19 ‘guiding principles’ for writing computer programs.
Over time, the community of Python programmers, especially
veterans, has come to regard these styles of programming as
idioms, that are unique for Python. Like human language, the
Pythonic idiom is a series of functional command written in
Python language, specified for each specific task [2, 8, 11].

Not all Python developers use idioms, especially if the
developers are not from the Python community. The most
common case is when the programming language is acquired
as a second language. As such, some of the coding styles from
another language is implemented. The deficiency of Python
writing style also often happens with Python beginners in the

1https://octoverse.github.com/projects#languages
2https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2019
3https://www.Python.org/dev/peps/pep-0020/

case that the way to write proper Python code can be non-
obvious to them [7].

Consequently, there are cases where not using an idiom
could be harmful to the code quality. One example that
obviously shows the benefit of following idiomatic coding
style in Python is the case of the ‘with open’ idiom, which
is designed to automatically close a file after it has been
opened. Python developers that do not use this idiom need
to explicitly close the file by themselves. The with statement
is better because it ensures that the file is always subsequently
closed, even if an exception is raised inside the with block.

In this paper, we would like to explore the usage of Pythonic
idioms, especially in the case of with open idiom (will be
referred to as idiom from now on for brevity) over the lifespan
of a software project. To track the usage of the idiom, we
propose two visualizations to analyze how and when the idiom
is adopted and fixed. The results show that developers tend to
adopt the idiom over time. We also found that, in three out
of the four projects, the developers fixed their code, i.e., non-
idiomatic code is removed and the idiom is instead introduced,
during the evolution of the software to improve their Pythonic
coding styles.

The contributions of this paper are as follow:
• Visualization methods that clearly show the differences

between the with open Pythonic idiom and its non-
idiomatic counterpart adopted in software projects.

• An analysis of the usage of the with open idiom, one
of the most popular Pythonic idioms in four open source
projects spanning over their lifetime of 6 to 13 years.

II. WITH OPEN IDIOM

In this section, we describe the with open idiom in more
details. As shown in Figure 1 and Figure 2, two code snippets
show the difference between a non-idiomatic and idiomatic
way of opening and reading a file.

f = open(‘file.txt’)
a = f.read()
print a
f.close()

Fig. 1: Example of non-idiomatic code to read a file



with open(‘file.txt’) as f:
for line in f:

print line

Fig. 2: Example of idiom to open and read a file

Figure 1 presents an example of non-idiomatic code to open
and read a file. We can see that, at the end of the code
snippet, we need to explicitly call the f.close() function
to complete the reading of the file.

In contrast, Figure 2 shows the with open syntax to
similarly read from a file. This idiomatic code automatically
closes the file for the developers after the file reading process
is completed. The advantage of using this idiom is a guarantee
that the opened file will also be closed after execution, even
if an exception is raised inside the with block.

III. EMPIRICAL STUDY

In this section, we first present our two research questions
with motivations. Then we introduce the criteria for data
collection and summarize chosen studied projects. Finally we
explain how we extracted the idiomatic and non-idiomatic
code during the experiment.

A. Research Questions

We formulate the following two research questions as part
of our goal to find when and how the with open Pythonic
idiom is used in software projects:

• (RQ1): Do developers adopt the idiom for file reading
statements over time?
Motivation: We are interested in the Python reading file
statements in this study because it is one of the most
frequently found Pythonic idioms in the wild. From the
study of Alexandru et al. [2], based on 1,000 popular
Python projects, the most popular Pythonic idiom used is
with open. The answer to this research question would
give us insights into the trend of the adoption of the with
open idiom over the evoluation of software projects.

• (RQ2): Do the developers fix their non-idiomatic file
reading statements?
Motivation: We aim to perform a detailed quantitative
analysis of the adoption of the two alternatives of file
reading statements, the with open idiom and the non-
idiomatic counterpart, in each file within the project to
see how many non-idiomatic codes are removed and how
many idioms are added into each project.

B. Data Collection

We have two criteria for selecting open source Python
projects in this study. First, the selected projects must
contain the idiom or its counterpart that we are inter-
ested in. Thus, either f=open(‘file.txt’) or with
open(‘file.txt’) must appear in the projects. To
achieve that, we prepared two code snippets as queries to

TABLE I: Summary of 4 studied projects.

Project Releases Contributors Start Date End Date

Beaker 432 63 12/08/2006 21/05/2019
DFHack 123 112 24/02/2010 28/12/2018
IPython 94 608 14/09/2008 03/07/2019
TShock 70 62 03/06/2013 01/04/2019

search for software projects in the source code search en-
gine called searchcode.com4. After the search, we picked the
projects that contain the two code snippets as our candidates.
Second, the project candidates are then filtered again based
on their number of releases. We are interested in studying the
adoption of the idiom over the project lifespan. So, only the
projects with multiple releases were kept. By having multiple
releases, we can provide a meaningful visualization on the first
and the last version of the software project.

C. Studied projects

Table I provides the overview of the studied projects. In this
study, we select four projects, Beaker, DFHack, IPython and
TShock, from a set of projects found during the data collection
step. All of these projects are written in Python. Beaker is an
open source software for managing and automating labs of
test computers. DFHack is a Dwarf Fortress memory access
library, distributed with a wide variety of useful scripts and
plugins. IPython is a command shell for interactive computing
in multiple programming languages originally developed for
Python. TShock is a toolbox for Terraria servers and commu-
nities.

We selected these four projects because they satisfied the
previously mentioned criteria: they contain the non-idiomatic
and idiomatic codes in file reading statements and they have
multiple releases. Also, the duration of the project is long
enough to make a useful observation of the evolution of idiom
usage. The shortest lifespan of the four projects is TShock with
70 releases over 6 years, and the longest one is Beaker with
432 releases over 13 years.

D. Data Preparation

Before creating the visualizations, we need to
gather the number of usage of the non-idiomatic
f=open(‘file.txt’) code and the with
open(‘file.txt’) idiom in the four selected projects.
Figure 3 summarizes the data preparation process. First,
we cloned the projects from GitHub. Then, we used the
tool called CCGrep [14] to find the occurrences of the two
snippets in the target projects. CCGrep is a code clone
detector that searches for clones using pattern matching like
grep5. We used the tool to query for statements that have the
“with open $” and “open =” sequences. It uses regular
expressions and tokenizers to identify these statements. Then,
we collected and stored the output of each query in two
different files. Lastly, we wrote a Python script to convert the

4https://searchcode.com
5At the time of writing this paper, the tool is under review at ICSE ’19.



Fig. 3: Data Preparation

output files to CSV files to facilitate the visualization, i.e.,
plotting by reading from the CSV files.

IV. RESULTS AND DISCUSSION

In this section, we present the results and then answer each
of the research questions.

a) (RQ1): Do developers adopt the idiom for file
reading statements over time?: The following figures (see
Figure 4) show the occurrences of non-idiomatic and idiomatic
style of with open file reading statement in each package
of the selected projects per year, in the form of a scatter plot.
The x-axis denotes the release date of the project and the
y-axis is the name of packages in the project. The red dots
represent the occurrences of non-idiomatic code and the green
dots represent the occurrences of the idiom. 3 out of the 4
projects contained the idiom so we will discuss only the 3
projects here.

Figure 4a shows the occurrences of the usage of file
reading statement in Beaker project. In this project, the
developers introduce only the idiom. In the graph, the idiom
initially appears in the doc page at the beginning (2013).
Then, the number of packages that adopt the idiom slightly
increase (during 2014 to 2019). At the end, there were 8
packages in which the idioms were found including doc,
tools, server, labcontroller, inittest,
Misc, documentation and client.

Figure 4b is the visualization for DFHack project. In this
project, the developers introduce both idiomatic and non-
idiomatic file reading statements (green is idiomatic and
red is non-idiomatic). At the beginning of the project, the
non-idiomatic codes were introduced. Then, they started to
disappear in the middle to the end, while the idiom began to
be introduced a bit later in the middle to the end of the project
with an incremental trend through time.

Figure 4c shows the usage of file reading statement in
IPython. The developers of this project present both id-
iomatic and non-idiomatic codes all over the project. The non-
idiomatic code mostly appeared at the beginning of the project.
Then, it occurred less in the middle to the last release. On the
other hand, the idiom started to be introduced into the project
mostly from the mid of 2011 until the last release of the project
(end of 2014) with an increasing trend.

Summary: We found that 3 out of the 4 selected
projects adopt the with open idiom. However, the
amount of adoption differs. One project only contains
the idiom without the non-idiomatic counterpart. The
other two projects have non-idiomatic code more at the
beginning and idiomatic code more from the middle
to the last release.

b) (RQ2): Do the developers fix their non-idiomatic
file reading statements?: The bar graphs in Figure 5 shows
the occurrences of the idiom and non-idiom usage of the file
reading statement in each file in the first and the last version
of the project in IPython project. We only discuss the findings
in the IPython project here since it shows an interesting trend
of idiom adoption. The other project results can be found from
the study website6. The number of found idioms is represented
in the y-axis and the file name is represented in the x-axis.
The red bar shows the amount of non-idiomatic code found
and the green bar shows the idiomatic code found.

From the two graphs, we can see that the non-idiomatic
codes first appear in the project’s first release, then they are
mostly removed from the files during the project evolution.
The code, however, occurs in some other files in the last
version instead. Interestingly, we can clearly observe from the
visualization that, in the last revision, the with open idiom
occurs in almost half of the files in the project.

Thus, for future work, we could investigate other popular
Pythonic idioms (i.e., if-statement) and how these idioms
evolve over time as well. We also could enlarge the diversity
of analyzed projects to see what difference among different
types of projects. Another interesting work is to build a more
interactive tool to visualize evolution results.

Summary: We found that two projects (Beaker and
DFHack) contain removals of non-idiomatic code
along with the inclusions of the with open id-
iom. Nonetheless, there are some projects that also
introduce more non-idiomatic file reading statements
(TShock and IPython).

6Study website: https://muict-seru.github.io/iwesep19-idioms/



(a) Beaker

(b) DFHack

(c) IPython

Fig. 4: Occurrences of the with open idiom and its non-idiomatic counterpart



(a) First Version of IPython

(b) Latest Version of IPython

Fig. 5: The comparison between the first and the last release of IPython



V. THREATS TO VALIDITY

In this section, we discuss potential threats to validity, which
are divided into construct validity and generalizability, of our
work as follows. For construct validity, in the data preparation
process, we rely on one code clone detector tool, CCGrep, to
extract the code snippets. The tool may produce some false
positive and false negative results. Moreover, we did not check
if the disappearing non-Pythonic code is actually replaced by
Python idioms. This detailed investigation will be done in the
future work. Another threat is the generalization of the results.
In our study, we only focus on one type of idiom: with
open. This idiom is important to study since it is one of
the most widely used idioms in open source software projects
[2]. The findings may be different for other Python idioms.
Lastly, our findings are based on the analysis of four Python
projects. They may not be generalized to other projects.

A. Related work

There are a few studies about language features. Parnin et
al. [10] study the adoption and use of Java generics in 40
programs. Dyer et al. [3] studied 31,000 open source Java
projects to look for the usage of new Java features such as
enhanced-for loops or pre-defined annotations.

Though few studies focus on the visualization of the evolu-
tion of programming idioms, there exist many tools proposed
for visualizing code clones. Tairas et al. [13] described a new
approach to display visualization of clone detection results that
takes advantage of the ability to extend the Visualiser plugin
known as AJDT Visualiser. Livieri et al. [9] presented a tool
named D-CCFinder which is a distributed approach at large-
scale code clone analysis. Another tool called SoftGUESS was
proposed by Adar and Kim [1] representing a novel way of
looking at code-clones in the context of many system features.

Research in recent years extends to the whole spectrum of
clone management [12]. To interrelate the system’s structure
with the clone detection results, Hauptmann et al. [5] sug-
gested using edge bundle views for visualization. To better
understand the evolution of code clones, Hanjalić [4] propoesd
ClonEvol which helps developers analyze the evolution of code
clones. Honda et al. [6] built a system named CCEvovis that
visualizes the evolved code clones across multiple versions of
a program to support maintenance of code clones.

VI. CONCLUSION

This paper presents a novel method on visualization and
analysis of adoption and evolution of the popular with open
Pythonic idiom. The analysis is performed on four open source
software projects with multiple releases over several years.

The two visualizations of the evolution of non-idiomatic and
idiomatic file reading statements and the amount of appearing
and disappearing idioms reveal that the Python developers in-
creasingly adopt the with open idiom in their projects over
time, which can be seen in the first visualization. Moreover,
the developers also removed the non-idiomatic version of the
file reading statements and added more idiomatic code in the
projects. This phenomenon can be observed from the second

visualization that compares the adoption of non-idiomatic and
idiomatic code between the first and the latest release.

This study is among the first to employ visualization tech-
niques for studying Pythonic idioms. It may be useful for
future studies on coding idioms and software visualization.

ACKNOWLEDGMENT

This research project was partially supported by Faculty
of Information and Communication Technology, Mahidol
University and JSPS KAKENHI Grant Numbers 18H04094,
JP18KT0013 and 17H00731.

REFERENCES

[1] E. Adar and M. Kim. Softguess: Visualization and
exploration of code clones in context. In ICSE’07, pages
762–766, 2007.

[2] C. V. Alexandru, J. J. Merchante, S. Panichella,
S. Proksch, H. C. Gall, and G. Robles. On the usage
of pythonic idioms. In Onward! ’18, pages 1–11, 2018.

[3] R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen.
Mining billions of ast nodes to study actual and potential
usage of java language features. In ICSE ’14, pages 779–
790, 2014.

[4] A. Hanjalić. Clonevol: Visualizing software evolution
with code clones. In VISSOFT ’13, pages 1–4, 2013.

[5] B. Hauptmann, V. Bauer, and M. Junker. Using edge
bundle views for clone visualization. In IWSC ’12, pages
86–87, 2012.

[6] H. Honda, S. Tokui, K. Yokoi, E. Choi, N. Yoshida, and
K. Inoue. CCEvovis: A clone evolution visualization
system for software maintenance. In ICPC ’19, pages
122–125, 2019.

[7] T. S. Kenneth Reitz. Code style: Idiom. In The Hitch-
hiker’s Guide to Python: Best Practices for Development
1st Edition, 2018.

[8] J. Knupp. Writing Idiomatic Python. 2013.
[9] S. Livieri, Y. Higo, M. Matushita, and K. Inoue. Very-

large scale code clone analysis and visualization of
open source programs using distributed CCFinder: D-
CCFinder. In ICSE ’07, pages 106–115, 2007.

[10] C. Parnin, C. Bird, and E. Murphy-Hill. Adoption and
use of java generics. Empirical Software Engineering,
18(6):1047–1089, Dec 2013.

[11] U. Rey and J. Carlos. From Python to Pythonic :
Searching for Python idioms in GitHub. In Seminar
Series on Advanced Techniques & Tools for Software
Evolution, pages 1–4, 2017.

[12] C. K. Roy, M. F. Zibran, and R. Koschke. The vision
of software clone management: Past, present, and future
(keynote paper). In CSMR-WCRE ’14, pages 18–33,
2014.

[13] R. Tairas, J. Gray, and I. Baxter. Visualization of clone
detection results. In EXT ’06, pages 50–54, 2006.

[14] K. I. Yuya, Miyamoto. Code clone detector like grep
command tool: CCGrep (In Japanese). In IPSJ/SIGSE
Software Engineering Symposium (SES2019), 2019.


