How Do Contributors Impact Code Naturalness? An
Exploratory Study of 50 Python Projects

Thanadon Bunkerd*, Dong Wang', Raula Gaikovina Kula®, Chaiyong Ragkhitwetsagul*,
Morakot Choetkiertikul*, Thanwadee Sunetnanta*, Takashi Ishiof, and Kenichi Matsumoto!
*Faculty of Information and Communication Technology (ICT), Mahidol University
YNara Institute of Science and Technology (NAIST)

Email: {thanadon.bun, chaiyong.rag, morakot.cho, thanwadee.sun} @mahidol.ac.th
{raula-k, ishio, wang.dong.vt8, matumoto} @is.naist.jp

Abstract—Recent studies have shown how software is com-
parable to natural languages, meaning that source code is
highly repetitive and predictable. Other studies have shown the
naturalness as indicators for code quality (i.e., buggy code). With
the rise of social coding and the popularity of open source
projects, the software is now being built with contributions
that come from contributors from diverse backgrounds. From
this social contribution perspective, we explore how contributors
impact code naturalness. In detail, our exploratory study investi-
gators whether the developers’ history of programming language
experience affects the code naturalness. Calculating the code nat-
uralness of 678 contributors from 50 open-source python projects,
we analyze how two aspects of contributor activities impact the
code naturalness: (a) the number of contributors in a software
project, (b) diversity of programming language contributions.
The results show that the code naturalness is affected by the
diversity of contributors and that more collaborative software
tends to be less predictable. This exploratory study serves as
evidence into the relationship between code naturalness and the
programming diversity of contributors.

Index Terms—code naturalness, programming language diver-
sity, developer experience.

I. INTRODUCTION

The use of language models is now common in the Software
Engineering domain, as a means to understand how the code
is written. For example, the naturalness of code refers to
the repetitive and predictable nature of the code in a project
[18]. Several works have shown how naturalness is useful
for refactoring, finding buggy code and so on. Language
modeling has revealed power-law distributions and an apparent
‘naturalness’ of software source code [15].

With the rise of social coding and commonplace of col-
laborative platforms like GitHub!, Gitlab> and BitBucket?,
contributions to software projects (especially open source
projects) is more collaborative with contributions that are di-
verse. For example, contributions come from a diverse range of
contributors, with different backgrounds and their experience
in programming ability. A number of studies have shown
that such open-source software (OSS) projects have significant
advantages. As stated by Khanjani and Sulaiman [11], OSS is
more flexible in term of productivity and increases motivation

Thttps://github.com/
Zhttps://gitlab.com
3https://bitbucket.org

and performance, moreover, it allows faster bug detection
and error resolution compared to closed source software (e.g.
proprietary software projects). For example, Bavota and Russo
[2] found that in the code review process of OSS projects,
more eyes involved are more likely to reduce the chance of
inducing bug fixes.

Software development involves a variety of human-intensive
activities especially for collaborative platforms nowadays. De-
velopers (i.e., humans) play an important role in the success
of a software project [7]. There have been many prior social-
technical studies performed on developer-related factors such
as developer experience, the role and the social network
in projects. Findings have shown that developers experience
constitutes a key factor that needs to be carefully considered
during maintenance tasks [4]. For instance, Casalnuovo et al.
[6] found that past social connections combined with prior
experience in languages dominant in the project lead to higher
productivity both initially and cumulatively. For the role factor,
Gilal et al. [8] investigated three independent role variables:
team leader role, personality types, and gender. They claimed
that the personality types of software development team roles
fluctuate by gender type. For the social network factor, Posnett
et al. [14] found that more focused developers introduce fewer
defects than defocused developers. Yet, there has been no
work that has looked at the diversity of programming language
contributions as a quantitative metric. We propose the term
‘diversity of programming language contributions’ (PLDiv) as
a metric to understand how diverse developer contributions to
projects with different programming languages.

In this paper, the research gap is that we would like to
explore how contributors impact the code naturalness. Con-
cretely, we would like to explore how the diversity of the
programming experience of contributors affects the naturalness
of software. In an exploratory study of 50 python projects,
we study the relationship between the code naturalness and
the diversity of their existing contribution activities. In detail,
we propose a simple measure to calculate the diversity of
programming language of contributors, using the history of
their other contributions. We then form these two aspects as
research questions to help guide our study:

List of 50 Python projects

20 total projects

= Python PLDiv = 0.5

PY 10 Python projects

Java PLDiv = 0.25

5 Java projects

C++ PLDiv = 0.25

5 C++ projects

Fig. 1: Diversity of programming language contributions. This is the concept for the PLDiv metric that our paper proposes.

e (RQq): Does the number of contributors impact code
naturalpess? Our assumption is to test whether the
degree of unique contributors has an impact on the code
naturalness.

e (RQ2): Does the diversity of programming language
contributors impact code naturalness? Our assumption is
to test whether programmers with a stronger contribution
to a particular programming language (i.e., python) will
tend to increase code naturalness of a project.

Results show that the code naturalness is affected by the
diversity of contributors. We find that projects in which con-
tributors have Python programming experience in the medium
level (between two to seven contributors) tend to be less
predictable code. Furthermore, projects with a large number of
contributors tend to be less predictable code. The contribution
of this paper is as follows:

« proposed metric to understand the diversity of contribu-
tions in contemporary software development projects.

« evidence that indicates the relationship between code
naturalness and contributors.

II. DIVERSITY OF PROGRAMMING LANGUAGE
CONTRIBUTIONS (PLDI1V)

Figure 1 depicts our metric used to calculate the diversity of
programming language contributions. In detail, the contributor
PL diversity (PLDiv) value of a project in a specific program-
ming language (x) is computed as follows:

N
PLDiv(x) = % Z I(x);/L; 1)
=1

where [(z); is a number of projects that a contributor ¢ involves
in a specific language (z), L; is a total number of projects that

a contributor ¢ involves with (in any programming language),
and N is a number of contributors in a project.

As shown in the figure, user ID A has a python experience
of 0.5 (i.e., out of all their 20 projects, 10 are python projects,
5 are written in Java and 5 in C++). The normalized rate
allows for a non-bias measure of developers regardless of their
number of contributions and range of different programming
language experiences.

III. EXPERIMENT SETUP

To evaluate our proposed measure, we set up the following
experiments to extract code naturalness.

A. Data Sources

We create our source code corpus from python open source
projects collected from GitHub. As a starting point, we adopted
the Python projects used in a prior study [10] and sampled 50
projects. To ensure that we processed tokens (i.e., code token)
from each of the 50 projects, between 20M and 25M tokens.
For all the projects, we examine only the master branch. A
summary for each programming language project history is
shown in Table I.

In the end, we were able to extract 678 contributors. Then
using that as a starting point, we then track each contributor
from each project, calculating the PLDiv for each. Detailed
statistics of the contributors’ information are shown in Table
II.

B. Classification of Projects

As a baseline measure and in order to understand whether
the number of contributors impacts the code naturalness
(RQ@1), we classify the projects into three groups:

TABLE I: Descriptive statistics of the 50 projects in our dataset

| Type | Min | Max | Mean | SD | Median |
The Number of Contributors 1 566 22 81 3
The Number of Commits 22 | 22,473 1,862 | 3,402 907
Statistics for Contributor Commits _ I
Avg. # Projects Contributed 89.97 proj. ’
Avg. # Unique Languages 6.24 lang.
Avg. Commit Size 87.89 commits 075
TABLE II: Statistics of the PLDiv for a contributor .
- —
o

50

40

w
S

Contrib.

N
=

]

——

low # Contrib. medium # Contrib. high # Contrib.

E3 high # Contrib. B3 low # Contrib. E3 medium # Contrib.

Fig. 2: Classifying projects based on number of contributors

o high # Contrib. projects - projects that have a high
number of contributors.

o medium # Contrib. projects - projects that have a medium
number of contributors.

o low # Contrib. projects - projects that have a few number
of contributors.

In order to understand how the PLDiv impacts the code
naturalness (R(Q)2), we classify the same projects from RQI
into three groups:

e high PLDiv projects - projects that have contributed to
more python projects compared to projects written in
other programming languages.

o medium PLDiv projects - projects that have contributed
to other programming projects as much as python
projects.

e low PLDiv projects - projects that have contributed the
least to python projects compared to projects written in
other programming languages.

Shown in Figure 2 and 3, we use Quantile-based discretiza-
tion technique to make the three groupings. We use the python
library pandas.qgcut? to equally divide the data into three
groups based on their distributions. high PLDiv (0.6~1.0),
medium PLDiv (0.4~0.6) and low PLDiv (0~0.4).

“https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.
gcut.html

0.25

0.00

low PLDiv medium PLDiv high PLDiv

E3 high PLDiv E= low PLDiv E3 medium PLDiv

Fig. 3: Classifying projects based on PLDiv

In the case of the number of contributors per project, we use
the same Quantile-based discretization technique: high #Con-
trib is a project with over 7 contributors, medium #Contrib is a
project that has three to seven contributors, and low #Contrib
is a project with less than or equal to 2 contributors.

C. Building the Language Model

Inspired by Rahman et al. [15], we use the same tools and
methodology. For the source code tokenization, we use our
python tokenizer>, It uses a lexicalize based on ANother Tool
for Language Recognition (ANTLR) and Anoyomouse/Antlr4-
Grammar-JavaScript-Py. Then we merge all the lexicalized
files to create a corpus for each file. Then we merge the
processed files to create our final corpus for each of the 50
projects.

To calculate the entropy, a single corpus is split into 10
folds. Ten-fold cross-validation is used with the probability
estimated from 90% of the data and validated on the remaining
10 %. The results are averaged over the 10 test folds.

We use MIT Language Model (MITLM) toolkit® to calcu-
late the entropy for each data set. MITLM uses techniques for
n-gram smoothing to deal with unseen n-grams in the test fold
(see [15] for further discussion). We calculate the entropy for
token sequences, i.e. n-grams, from 1-grams to 10-grams for
each corpus.

D. Analysis

Similar to the work of Rahman et al. [15], we visualize the
entropy against the n-grams within each analysis of the results.
For RQI1, we employ the same analysis, however, we use the

Shttps://github.com/Tkuyadeu/CodeTokenizer
Shttps://github.com/caseycas/CacheModelPackage

75 #Contrib_label
’ —e— high #Contrib
704 medium #Contrib
’ -@- low #Contrib
6.5
=
o
S 6.0
c
]
$ 55 1 e o .~ /.
g .\\\ >
< 5.0 4 i, —~e
o—— g O
4.5 S e e—mnesT=Te
4.0
3.5 1
T T T T T
2 4 6 8 10

Order of N-grams

Fig. 4: Average entropy comparing with total number of contributors in Python. The result suggests that projects that are more

collaborative tend to have less predictable code.

high # Contrib projects, medium # Contrib projects, and low
Contrib projects for our analysis. The lower the score of
the entropy, means the higher likelihood for code naturalness.
Then for RQ2, we use the same analysis of the contributors’
classifications of High PLDiv, medium PLDiv, low PLDiv for
RQLl.

IV. RESULTS AND DISCUSSION

In this section, we present the results and then answer the
two research questions.

a) (RQ1): Does the number of contributors impact
code naturalness?: Figure 4 shows that projects with a higher
number of contributors tend to have less predictable code. In
contrast, the results show that projects with a medium number
of contributors tend to have a more predictable code.

The results show that contributors do have an impact on
code naturalness. Intuitively, the more collaborative a project
is, the more it tends to have less predictable code. At this
stage, we did not measure how contributors profiles (i.e., how
active and how long they have been contributing). This is seen
as interesting future work.

Summary: The projects within the group of the high
number of contributors tend to have less predictable
code than the projects having low and medium size of
contributors.

b) (RQ>): Does the diversity of programming lan-
guage contributors impact code naturalness?: Figure 5
shows that contributors with low PLDiv tend to belong to
projects that have more code naturalness. In contrast, this
also means that contributors that have medium PLDiv tend
to belong to projects that have the lowest code naturalness.

The results show that how contributions impact the code
naturalness is not trivial. From these results, we can sum-
marize that maybe that GitHub projects tend to have code
that is not completely repetitive. The result is indicative that
collaborative software may have a range of naturalness, and,
in fact, having more PLDiv might not be an impacting factor
for understanding naturalness.

Thus, for future work, there could be other metrics and
measures that are related to the naturalness, including the
naturalness of the other projects, that might influence the
naturalness of an existing project. Other interesting work could
at the ecosystem level, to see whether the communities share
more natural code as oppose to projects that contain a mixture
of programming language projects.

Summary: Projects in which contributors have Python
programming experience in the medium level tend to
have less predictable code.

V. THREATS TO VALIDITY

We discuss two key threats to the validity of the study. The
first threat is in terms of the construction of the experiment and
threats on the tools. In the first threat, we understand that our
classification is based on a sample of 50 projects. This might
change with other types of projects. To mitigate this issue, we
have used the statistical method to analyze the differences. We
expect to improve the method in a more mature version of this
work. The second threat is the generalization of the results.
In this study, we only look at a case study of python projects.
However, we cannot at this stage generalize our findings
to other programming languages. We are confident that the

8 -
PLDvi_label
--@- high PLDvi
K medium PLDvi
7 % —o— low PLDvi
=
o
=
€ 6 -
]
u
on
s
1
z
5 4
e, @ rrrnnnasss L LTTTTTrre {_ETTERSR. . -
o 0 . o—"3_—o
4 -
T T T T T
2 4 6 8 10

Order of N-grams

Fig. 5: Average entropy compared with contributors experience in Python. Projects with low python PLDiv have highly repetitive

code.

collect 50 samples are enough in this exploratory study. The
third threat is this study focuses on the diversity of pro-
gramming language-specific among contributors in a project.
The proposed definition of PLDiv thus mainly considers the
number of contributors against the number of programming
languages that they involved with. We, however, acknowledge
that there are several factors (e.g. developer’s expertise) that
affect code naturalness which we aim to explore those factors
in our future work.

VI. RELATED WORK

In this section, we will present the related work focusing
on software naturalness.

Research regarding naturalness has been widely studied in
different aspects such as code completion and suggestion [9],
the naturalness of names in code [5, 12] and summarization
and concern location [16]. In detail, Ray et al. [17] analyzed
the naturalness on buggy codes and found that code with bugs
tends to be more entropic (i.e. unnatural), becoming less so as
bugs are fixed.

There are a few studies regarding measuring developers’
contributions and diversity in software projects. Ben et al.
[3] use visual analysis to study contribution characteristics of
programming in CraftBukkit project, an open-source software
project. Gousios et al. [1] propose a hybrid model that com-
bines traditional contribution metrics and the metrics mined
from software repositories. The work that is closest to us is the
study by Liang et al. [13]. The study investigates the effect of
programmers’ knowledge diversity (KD) and value diversity
(VD) to the project performance using conflict theory. The
authors found that KD is beneficial to the project outcome,
while VD is harmful. Instead of studying the programmers’

knowledge and value diversity, our study investigates the pro-
grammers’ programming language contribution and its effect
on the naturalness of the source code in software projects.

VII. CONCLUSION

Our exploratory study investigates whether the developers’
history of programming language experience affects the code
naturalness. Calculating the code naturalness of 678 contrib-
utors from 50 python projects, we analyze how two aspects
of contributor activities impact the code naturalness. Results
show that:

« Projects which are more collaborative with more contrib-
utors, tend to have less predictable code.

« Projects in which contributors have Python programming
experience in the medium level tend to have less pre-
dictable code.

This exploratory study serves as evidence into the relationship
between code naturalness and the programming diversity of
contributors. For future work, it would be interesting to find
out how naturalness evolves over time and how other metrics
related to the programming language diversity could assist
with understanding how code is written.

ACKNOWLEDGMENT

This research project was partially supported by the Fac-
ulty of Information and Communication Technology, Mahidol
University and JSPS KAKENHI Grant Numbers 18H04094,
JP18KTO0013 and 17H00731.

REFERENCES

[1] Measuring developer contribution from software repos-
itory data. In Proceedings of the 2008 international

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

workshop on Mining software repositories (MSR ’08),
page 129, 2008.

G. Bavota and B. Russo. Four eyes are better than two:
On the impact of code reviews on software quality. In
2015 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pages 81-90, 2015.

X. Ben, S. Beijun, and Y. Weicheng. Mining developer
contribution in open source software using visualization
techniques. In Proceedings of the 2013 Third Inter-
national Conference on Intelligent System Design and
Engineering Applications, pages 934-937, 2013.

P. Bhattacharya, I. Neamtiu, and M. Faloutsos. Determin-
ing developers’ expertise and role: A graph hierarchy-
based approach. In 2014 IEEE International Conference
on Software Maintenance and Evolution, pages 11-20,
2014.

D. Binkley, M. Hearn, and D. Lawrie. Improving identi-
fier informativeness using part of speech information. In
Proceedings of the 8th Working Conference on Mining
Software Repositories, MSR 11, pages 203-206, 2011.
ISBN 978-1-4503-0574-7.

C. Casalnuovo, B. Vasilescu, P. Devanbu, and V. Filkov.
Developer onboarding in github: The role of prior social
links and language experience. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, pages 817-828, 2015.
ISBN 978-1-4503-3675-8.

T. DeMarco and T. Lister. Peopleware: Productive
Projects and Teams (3rd Edition). Addison-Wesley
Professional, 3rd edition, 2013. ISBN 0321934113,
9780321934116.

A. R. Gilal, J. Jaafar, M. Omar, S. Basri, and A. Waqas.
A rule-based model for software development team
composition: Team leader role with personality types
and gender classification. Information and Software
Technology, 74:105 — 113, 2016.

S. Han, D. R. Wallace, and R. C. Miller. Code com-
pletion from abbreviated input. In Proceedings of the
2009 IEEE/ACM International Conference on Automated

[12]

Software Engineering, ASE 09, pages 332-343, 2009.
ISBN 978-0-7695-3891-4.

H. Hata, C. Treude, R. G. Kula, and T. Ishio. 9.6 million
links in source code comments: Purpose, evolution, and
decay. In Proceedings of the 41st International Confer-
ence on Software Engineering, ICSE °19, 2019.

A. Khanjani and R. Sulaiman. The process of quality
assurance under open source software development. In
2011 IEEE Symposium on Computers Informatics, pages
548-552, 2011.

D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s
in a name? a study of identifiers. In Proceedings of
the 14th IEEE International Conference on Program
Comprehension, ICPC ’06, pages 3—12, 2006. ISBN 0-
7695-2601-2.

T. Liang, C. Liu, T. Lin, and B. Lin. Effect of team

diversity on software project performance. Industrial
Management & Data Systems, 107(5):636-653, 2007.

D. Posnett, R. D’Souza, P. Devanbu, and V. Filkov. Dual
ecological measures of focus in software development.
In 2013 35th International Conference on Software En-
gineering (ICSE), pages 452461, 2013.

M. Rahman, D. Palani, and P. C. Rigby. Natural soft-
ware revisited. In Proceedings of the 41st International
Conference on Software Engineering, ICSE ’19, pages
37-48, 2019.

S. Rastkar, G. C. Murphy, and A. W. J. Bradley. Gener-
ating natural language summaries for crosscutting source
code concerns. In Proceedings of the 2011 27th IEEE In-
ternational Conference on Software Maintenance, ICSM
11, pages 103-112, 2011. ISBN 978-1-4577-0663-9.
B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli,
and P. Devanbu. On the “naturalness” of buggy code.
In Proceedings of the 38th International Conference on
Software Engineering, ICSE 16, pages 428-439, 2016.
ISBN 978-1-4503-3900-1.

R. Robbes and M. Lanza. Improving code completion
with program history. Automated Software Engg., 17(2):
181-212, 2010. ISSN 0928-8910.

