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Abstract—Code clones or similar segments of code in a
software project can be detected by using a clone detection tool.
Due to modifications applied after copying and pasting of the
cloned code, the current code clone detection tools face challenges
to accurately detect clones with heavy modifications (i.e., Type-3
clones or clones with added/deleted/modified statements). One
challenge is because the clone results contain several false
positives.

In this paper, we propose an approach for increasing the pre-
cision of code clone detection using machine learning techniques.
By training a decision tree on 19 clone class metrics, we use the
trained decision tree as a clone filter by placing it in the last step
in the clone detection pipeline. This aims to remove false positive
clone classes reported by a clone detection tool.

We found that the decision tree clone filter is helpful for
decreasing the number of false positive clone classes in iClones,
a well-known code clone detector. After training the decision
tree on 537 clone classes in JFreeChart and evaluating it on the
test data set, it could improve iClone’s precision from 0.94 to
0.98. The findings show that decision tree can be used effectively
for filtering false positive clones. Nonetheless, we found that the
filter is only effective for Java and does not offer satisfying
performance when running on a Django Python project.

Index Terms—code clones, machine learning, decision tree

I. INTRODUCTION

Copying and pasting pieces of source code is a common
activity in software development. The result of this activity
are duplicated pieces of code, i.e., code clones. The clones
can be exactly identical, slightly different, or largely different
depending on the amount of modifications made to them after
copying [1]. Code clone detection is an established research
area in software engineering aiming to locate such duplicated
pieces of code in software. There are several techniques
introduced in the literature to detect clones such as text-based,
token-based, tree-based, and graph-based techniques [1]–[4].

Although exact-match clones (i.e., Type-1 clones) or clones
with renaming (i.e., Type-2 clones) can be effectively detected
by the current state-of-the-art clone detectors, the clones that
contain several modifications such as added/deleted/modified
statements (i.e., Type-3 clones) still remain a challenge [5].
Moreover, they are the largest number of clones found in
software projects [6]. Lately, machine learning techniques are
also used for code clone detection, both for the detection
technique itself [7], [8] and for enhancing the clone detec-
tion performance [5], [9]. All the mentioned techniques are

performed on the clone pair level and only work with clone
detectors that report clone pairs.

This paper presents an alternative approach based on using
a machine learning model to enhance the precision of code
clone detection in filtering spurious clones at the clone class
level. We selected 19 clone class metrics that capture different
characteristics of cloned and non-cloned classes and trained
a decision tree binary classifier to help to filter out spurious
clone classes from the original clone result reported by a clone
detection tool.

The paper makes the following contributions.
• A technique of using clone class metrics and a machine

learning model to create a clone filter and its evaluation.
• A case study of applying a clone filter trained from one

language to clones in another language.
The introduced technique is useful for code clone detectors

that report the clones based on clone classes, not clone
pairs. The examples of such clone detectors are iClones [10],
NiCad [11], [12], and Simian [13]. Moreover, by including the
machine learning technique as a clone class filter, the approach
can be applied to several existing clone detectors without the
need to alter their detection methods.

II. BACKGROUND

A. Code Clones

Code clones are similar code fragments (i.e., segments of
code). They are created by copying and pasting with or without
minor adaptation, which are common activities in software
development. Code clones need to be located when developers
want to enhance or update an existing clone fragment. The
benefits and drawbacks of clone clones are still controversial
[14]–[16]. While the clones may create maintenance issues in
general, they are also beneficial in some specific cases [16].
The literature in code clone research has separated the clones
into four types [1]

• Type-1 clones are exact copies of code without any
modification except formatting, such as white space and
comments.

• Type-2 clones are copies of code with only variations in
formatting and parameters (i.e., variables, type, function
identifiers, or literals).



• Type-3 clones are copies of code with modifications
including added, deleted, or modified statements.

• Type-4 clones are code fragments that perform a similar
task (similar semantic) but with different implementa-
tions.

We mainly focus on code clones of Type-1 to Type-3 in this
study since we are interested in code clones that contain some
level of syntactic similarity.

B. Machine Learning (ML) Model: Decision Tree

Decision Tree is a supervised learning algorithm that gener-
ates decision nodes using the information gain obtained from
the value of each feature [17]. It can be represented as a
tree graph model that consists of multiple levels of nodes
representing a decision rule. The classification is made by
passing the data through the tree from the top to a leaf node.
At each decision node, the branch is selected based on the
value of the corresponding feature. A significant benefit of
the decision tree model over other models is that it provides
an interpretable result [18].

C. Code Metrics for Clone Filtering

Higo et al. [19] propose a metric called RNR as a clone filter
for CCFinder clone detector [20]. RNR measures the ratio of
non-repeated code sequence over the whole code sequence in
a clone set. Saini et al. [5] employed 24 Java method-level
code metrics to create a filter for challenging clones. The
authors used a deep neural network trained on those metrics
to classify cloned/non-cloned pairs. The technique combined
with other two filters has shown to give high precision and
recall. Moreover, the study by Koschke and Bazrafshan [21]
uses nine code metrics extracted from the clones including
number of tokens, number of parameters, clone type, the
number of distinct token types in a sequence, fraction of non-
repetitive tokens, parameter overlap, parameter consistency,
degree of valid references, and fraction of repeated parameters.
Then, a filter is created using a decision tree machine learning
model to filter spurious clone candidates. The filter is used to
complement the authors’ token-based code clone detector cpf
in their study of clone rates in open-source programs written
in C or C++.

III. RESEARCH QUESTIONS

In this paper, we ask the following research questions:
• RQ1: Effectiveness of ML clone filter to improve

clone detection precision How well does the trained ML
model based on clone class features help to improve the
precision of code clone detection? We investigate whether
the features that are extracted from clone classes can be
used as guidelines for filtering clone classes.

• RQ2: Effectiveness of applying an ML clone filter
trained from one language to another language How
well can an ML model based on clone class features be
applied on another different language? We also inves-
tigate whether the clone filter using a machine learning
model that is trained on clones from one programming

language can be effectively applied to clones from an-
other programming language. This would help us realize
how possible it is to create a universal (cross-language)
model for code clone filter.

IV. METHODOLOGY

To answer the research questions, we performed an exper-
iment of training a clone filter using a decision tree model
and evaluating its effectiveness in removing false clone classes
from clone detection results.

A. Experimental framework

Fig. 1. Experimental frame-work diagram

We followed the experimental framework shown in fig. 1
in this study. First, the source code data of a project under
analysis is fed into iClones [10], a code clone detector that is
used in several clone studies [2], [3], [22]. The tool detects
clones of Type-1 to Type-3 in a given project and reports clone
classes in the RCF format [10]. At the same time, the metric
extraction is performed on the reported clone classes. The
clone validation is then performed by a human on the reported
clone classes to classify them into true or false clone classes.
These validated clone classes are used as ground truth data
in the training and the evaluation of the model. The training
and evaluation of the decision tree model is then performed
based on the 19 metrics and the manually validated ground
truth data. Finally, the derived decision tree is implemented as
a module in iClones.

Next, we explain the three key steps in the experimental
framework (clone class metric extraction, clone validation, and
model training and evaluation) in detail below.

B. Clone Class Metric Extraction

We invented 19 clone class metrics for this study as shown
in table I. Some of the metrics, such as clone type (clone-
Type) or number of distinct token types (uniqueTokenNo), are
adopted and modified from the previous study by Koschke
and Bazrafshan [21]. The clone class metrics aim to capture
different properties of the clones. For example, the file name
similarity (similarFileNameRate) metric shows whether the



clone classes occur in the same file, in different files but with
similar file names, or in files with totally different file names.
The ratio of clone gap tokens over all the tokens (gapRate)
metric indicates how much (percentage) of the source code in
the same clone class are not exactly the same.

C. Data Set and Clone Validation

To answer RQ1, we selected JFreeChart, an open-source
Java project that generates graphical charts. The project,
containing 987 Java files, is used to create ground-truth data.
The statistics of JFreeChart is presented in table II. We
extracted the clone classes from this project using iClones. The
result contained 671 clone classes. The first author, who is a
computer science student and is familiar with code clones, took
the role of an investigator and performed a clone validation
by manually checking all the 671 clone classes and decided
whether they were true or false clone classes. After the clone
validation, we found 46 false clone classes and 625 true clone
classes.

D. Error Measures

We trained and evaluated the ML filter towards precision.
Its definitions are as follows:

precision =
TP

TP + FP

where TP represents the actual true clone classes that are
classified as true clone classes by the decision tree, and FP
represents the actual spurious clone classes that are classified
as true clone classes.

E. Model Training, Tuning, and Evaluation

We divided the validated clone data into three sets: training,
validation, and test. Seventy percent of the data (470 clone
classes) is selected to train the model, ten percent (67 clone
classes) is used to validate the model and tune the parameters,
and twenty percent (134 clone classes) is for testing the model.

After training the decision tree using the training set, the
tuning of the decision tree’s parameters using the validation
set is performed. In general, a machine learning algorithm
may offer different performance if tuned differently. Thus, it
is important to derive optimal (or close to optimal) parameter
values for each machine learning technique used. The decision
tree has multiple parameters to configure (e.g., max_depth,
min_samples_split, min_samples_leaf,
min_weight_fraction_leaf, and max_features).
Nonetheless, in this study, we focus only on tuning the
max_depth parameter (i.e., how many level the decision
tree should have). The models were trained on the training
set with different max_depth values and were executed to
classify the data in the validation set. We varied the value
of max_depth from 3, 4, 5, 6, 7, and 8 and the precision
score associated with each max_depth value was recorded.
At the end, we selected the max_depth value that offered
the highest precision score.

After training and tuning the decision tree model, we
evaluated the trained decision tree on the test set of 134 clone

classes, which consist of 126 true clone classes and eight false
clone classes. Since the data set is created from the result of
iClones, we could only measure the model precision. We could
not compute recall because we did not have a complete ground
truth of all the clones in the JFreeChart project.

F. Evaluation of the Clone Filter on Clones in Another Lan-
guage

To answer RQ2, we integrated the decision tree clone filter
into iClones by translating the structure of the decision tree
into sequences of if-else statements. The filter is put at the
last step in the clone detection pipeline to analyze the clone
class candidates and remove spurious clones before the tool
generates the RCF clone report.

Then, we ran iClones with the trained decision tree built in
as a clone class filter on a Python project and evaluated its
effectiveness. We picked the Django project as our subject of
study due to its popularity and its relatively similar size to the
JFreeChart project. To test the effectiveness of the filter, we ran
iClones twice: with and without the filter. We then compared
the results to find the differences, i.e., the clone classes that
were removed by the filter. Then, the first author manually
validated the removed clone classes.

V. RESULTS AND DISCUSSION

In this section, we discuss the results from the experiment
including the correlations between the metrics, the trained
decision tree, and the answers to RQ1 (the effectiveness of
using a decision tree to improve clone detection precision)
and RQ2 (the effectiveness of using a decision tree trained
from one language for another language).

A. Correlations Between Clone Class Metrics

From fig. 2, the heatmap shows the pair-wise mutual
Pearson correlations between the 19 clone class metrics. The
value of the correlation is between -1 and +1, where +1 means
the two metrics perfectly correlate positively and -1 perfectly
correlate negatively. The light color (yellow) indicates positive
correlations, while the dark color (blue) indicates negative
correlations among the metrics. We observe that there are
some metrics that are highly correlated. For example, the
set of metrics on the top left of the chart, which includes
{minFragmentLength, maxFragmentLength,
cloneLength, uniqueTokenNo, identifierNo,
uniqueIdentifierNo, operatorNo}, shows medium
to high correlation among themselves (0.32–0.99). Another
correlated metric pair is {similarFileNameRate,
similarFilePathRate} (0.92) which is quite expected
due to the semantic similarity of the two metrics. Lastly,
we found that the metrics about clone gaps are also highly
correlated, i.e., {totalGap, maxGap, longestGap,
gapRate, and gapCount} (0.41–0.96).

B. Trained Decision Tree

The decision tree from the training on 625 clone classes
in the training set and tuning of the max_depth parameter



TABLE I
CLONE CLASS METRICS

No. Metric Description

1 cloneType The type of clone class: Type-1, Type-2, or Type-3
2 volume Total number of tokens in the entire clone class
3 maxFragmentLength Longest fragment length
4 minFragmentLength Shortest fragment length
5 cloneLength Number of tokens that are clone
6 uniqueTokenNo Number of unique tokens
7 identifierNo Number of identifiers
8 uniqueIdentifierNo Number of unique identifiers
9 operatorNo Number of operators

10 overlapIdentifierRate Identifier overlap ratio
11 fileNO Number of files
12 tokenTypeDiversity Number of unique token types
13 similarFileNameRate File name similarity score
14 similarFilePathRate File path similarity score
15 totalGap Number of tokens that are modification section or gap
16 maxGap Size of the largest clone gap (tokens)
17 longestGap Size of the longest clone gap (tokens)
18 gapRate Ratio between number of gap tokens and number of non-gap tokens
19 gapCount Number of gaps between the cloned segments

TABLE II
STATISTICS OF THE DATA SETS

Project Files Clone classes (T/F) Training – 70% (T/F) Validation – 10% (T/F) Test – 20% (T/F)

JFreeChart 987 671 (625/46) 469 (439/30) 68 (60/8) 134 (126/8)

on 67 clone classes in the validation set is shown in fig. 3.
The trained decision tree has the max_depth value of 5.
We can see that, from the structure of the tree, the root
node is the gapRate metric with the split of 30 spurious
clone classes and 439 true clone classes. This is the best
metric according to our data set that represents the first
split between the two result categories. A low gapRate
tends to show that the clone classes are true clones, while
a high gapRate hints that the clone classes are spuri-
ous ones. Then, the clone class metrics that are evaluated
next are the longestGap and similarFilePathRate.
We observed that from the total of 19 clone class
metrics that we extracted, only 9 metrics, gapRate,
longestGap, similarFilePathRate, totalGap,
overlapIdentifierRate, uniqueIdentifierNo,
maxFragmentLength, volume, and gapCount, con-
tribute to the final decision tree. Thus, they are the most
effective metrics for building the clone class filter in this study.

C. RQ1: Effectiveness of ML clone filter to improve clone
detection precision

After evaluating the trained decision tree on the test set,
we found that the decision tree filter removed 5 out of 8 false
clone classes in the total of 134 classes in the test data set.
Compared to the original result that is reported by iClones
(126 true clone classes and 8 false clone classes), this improves

the precision of iClones on the test data set from 0.94 to 0.981.

Answer to RQ1: The ML clone filter is effective on
improving clone detection precision. The case study of
decision tree filter integrated in iClones shows that it
can increase iClones’s precision from 0.94 to 0.98.

D. RQ2: Effectiveness of applying an ML clone filter trained
from one language to another language

After comparing the clone result of iClones between with
and without the filter, we found 33 clone classes that were re-
moved after adding the filter to iClones. The manual validation
of the removed clone classes shows that eight of them were
actually false clones. Nonetheless, the other 25 removed clone
classes were true clones. The finding shows that the Java filter
is too strict in removing Python clones and removed several
true clone classes. There are a few possible explanations for
this. First, the data set may be too small, which makes the
model overfitting to the Java clone data. A larger training data
set is needed in order to create a more generalized clone filter.
Second, the invented metrics may not effectively capture the
characteristics of clones in different languages. Other clone
class metrics better capturing the clones in different languages
may be needed.

1Original precision = 126
(126+8)

= 0.94, Filter’s precision = 126
(126+3)

=
0.98



Fig. 2. Correlation between clone class metrics

Fig. 3. Trained decision tree



Answer to RQ2: The ML clone filter trained on Java
is not effective on filtering clones in Python.

VI. THREATS TO VALIDITY AND FUTURE WORK

Internal validity: The training and parameter tuning of the
decision tree model is based on precision. With the restriction
of the creation of ground truth data, it is the only error measure
we could use. If the data allows, training the decision tree
model using other error measure (e.g., recall, F1) may produce
different result. The decision tree performance may be varied
based on the tuning of its parameters. We mitigated this threat
by tuning the max_depth parameter using the validation
set. Third, the data set that we used suffer from imbalance
between the true and false clone classes, i.e., the number of
true clone classes are much higher than the number of false
clone classes. Moreover, the clone validation is performed by
only one investigator, which may introduce bias into the result.
We plan to mitigate these two threats in the future work.

External validity: The findings in this study is based only
on the JFreeChart open source Java project and Django open
source Python project. It may not be generalized to software
written in other languages or commercial software. Moreover,
the effectiveness of the filter is only from a decision tree
model. Selecting other machine learning techniques for this
task may give different results.

Future work: We plan to improve the work further on the
following aspects. First, we plan to increase the number of
data points to train and evaluate the model in Java. By using
larger and more balance ground-truth data, more accurate
models are generally expected. Moreover, this might also
mitigate the issue of poor performance of the filter on Python
clones. Second, we will try to train another decision tree
on the Python clone data and compare it with the decision
tree derived from the Java clones to gain more insights into
their differences. Third, we will try other more sophisticated
machine learning techniques, e.g., random forest. They may
offer better performance than the current decision tree model.
Last, we will implement a function that allows the iClones
users to plugin their own filter without updating the source
code.

VII. ACKNOWLEDGEMENT

This research project was partially supported by Faculty of
Information and Communication Technology, Mahidol Uni-
versity.

VIII. CONCLUSION

The paper introduces an approach to enhance existing code
clone detection tools with a machine learning technique. We
invent 19 clone class metrics to capture different characteristics
of code clones and use them to train a decision tree model. The
trained decision tree model is then used as a filter to remove
spurious clone classes from the clone result.

By training the decision tree on 671 Java clone classes
detected by iClones clone detector, the result shows that the

decision tree could remove five spurious clone classes that
were originally reported by iClones, hence increasing the
precision of the detection.

However, the application of the decision tree clone filter
trained on Java clones to Python clones reveals that the filter
was not effective on the other language and more future work
is needed on this issue.
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